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Nodally Integrated Finite Element Formulation
for Mindlin-Reissner Plates

D. A. Simoes and T. A. Jadhav

Abstract— This work describes a nodally integrated finite element formulation for plates under the Mindlin-Reissner theory. The
formulation makes use of the weighted residual method and nodal integration to derive the assumed strain relations. An element
formulation for four-node quadrilateral elements is implemented in the nonlinear finite element solver Abaqus using the UEL user element
subroutine. Numerical tests are carried out on the new element and the results are presented.
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1  INTRODUCTION
N nodal integration, the numerical integration is carried out
at the corner nodes of the element, rather than at quadrature
points inside the element. Research on finite element formu-

lations emerged in the beginning of the 1970s, while nodal
integration in FEA is a relatively recent development, with the
first works beginning in the year 2000 describing its applica-
tion to tetrahedral elements. Wolff [1] discussed nodally inte-
grated finite elements, focussing on solid elements. It was
shown that nodally integrated elements show good conver-
gence  compared  to  full  integration  when  applied  to  incom-
pressible media. Nodal integration is also attractive because of
its applicability to meshfree methods as described by Quak et
al [2], who compared gauss integration and nodal integration
for meshless analyses. This is because, as described in this
formulation, the method focuses on a nodal patch, rather than
on an elemental area, as conventional elements do. In large
deformation processes, for example in extrusion and injection
moulding, finite elements can suffer from excessive mesh de-
formation. Meshless methods are well suited to avoid these
problems. However, the obstacle that must be overcome in
developing nodally integrated elements is that the quantities
at nodal points are not continuous, and the nodes are shared
among multiple elements. These elements also suffer from
shear locking, being based on the Mindlin-Reissner theory for
thick plates.

Wang and Chen [3] described a Mindlin-Reissner plate
formulation with nodal integration. Castelazzi and Krysl [4]
introduced Reissner-Mindlin plate elements with nodal inte-
gration in which the nodal integration is derived from the a
priori satisfaction of the weighted residuals. They have ap-
plied  the  same  formulation,  called  the  NIPE  technique  to  a
nine-node quadrilateral plate element [5]. However, in this
case, a variational energy method is used instead of the
weighted residual method in their previous work. The result-
ing element is found to be an improvement over the earlier
one. Giner, E. et al [6] and Park, K. et al [7], have implemented
special elements for fracture mechanics in Abaqus UEL.

Abaqus is an extremely capable nonlinear solver with a
large element library that allows analysis of even the most
complex structural problems. The default element formula-
tions in Abaqus are accurate, robust and reliable enough, hav-
ing been extensively tested. However, situations arise in
which the Abaqus element library would not serve the pur-
pose, and the user would like to define their own elements,
such as:

• Modelling non-structural physical processes that are
coupled to structural behaviour

• Applying solution-dependent loads
• Modelling active control mechanisms
• Studying the behaviour of proposed formulations
For example, elements can be developed to function as con-

trol or feedback mechanisms in an analysis that consists of
regular elements. Moreover, it is easier to maintain and port a
subroutine than to do the same for a complete finite element
program.

The following are some desirable reliability criteria for fi-
nite element formulations [8]:

1. The element formulation must not incorporate nu-
merically adjusted factors which can be adjusted to make the
element accurate for one class of problems, but not for other
types of problems.

2. The element formulation must not contain spurious
rigid body modes.

3. The element should not lock in thin plate / shell anal-
yses.

4. The element formulation must satisfy patch tests.
5. The element accuracy should be insensitive to ele-

ment distortions and changes in material properties.
In  this  paper,  we  describe  an  element  formulation  which

makes use of nodal integration and the weighted residual
method to derive the assumed strain operators. This is applied
to two elements: a four-node quadrilateral element and a
three-node triangular element. A four-node quadrilateral ele-
ment is then implemented in the nonlinear finite element solv-
er Abaqus by writing a user element subroutine (UEL). In sec-
tions 3 and 4, we follow the same procedure described in [4].
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2  BASIC GOVERNING EQUATIONS
In this section, the basic equations of a Reissner-Mindlin

plate  theory  are  summarised.   We  denote  the  domain  of  the
plate, which is its volume by V and the thickness by t.

= {( , , | z [-t/2; t/2], (x,y) A }         (1)
where A is the area of the plate and C=  is its boundary.

The Cartesian components of the displacement in three-
dimensional space are

= z  ,   , =                (2)
 and  are the rotations of the midsurface normal about

the Cartesian x and y axes and w is the displacement in z. The
functions , ,  are  the  unknowns  that  we  would  like  to
determine. This is shown in Figs. 1 and 2. is the drilling de-
gree of freedom.

Fig. 1.  Notation for rotation components of a midsurface normal

Mindlin plate theory assumes that transverse shear defor-
mation occurs, and the strains are given as follows:

 = z

 = -z

=

=

=                                    (3)

Fig. 2. Moments and transverse shear forces on a differential element of a
plate

We express the three-dimensional displacement vector in
terms  of  the  mixed  component  vector  of  the  generalised  dis-
placements

= [ , , ] (4)

The curvatures and transverse shear strains are given by

=
,

,

, + ,

(5)

= ,

,
(6)

The compatibility equations can be written as
bending strains,

= (7)

curvatures,
=      => = (8)

shear strains,
=  = = (9)

where  and  are the gradient matrices

The constitutive equations for plane stress
for bending,

= = (10)

for shear,
= = (11)

For a homogeneous, linear elastic and isotropic material,

=

0
0

0 0
( )

2

(12)

Here, the bending rigidity

=
12( ) (13)

E is the Young’s modulus and  is the Poisson’s ratio,

= 1 0
0 1 (14)

G is the shear modulus. k is the shear correction factor,
which accounts for the parabolic z-direction variation of the
transverse shear stress, and kt can be regarded as the effective
thickness for transverse shear deformation. It is taken to be
5/6 throughout.

The plate is loaded by boundary load = [0,  0, (x,y)] T
The balance equation obtained after integrating through the

thickness of the plate is
+ + = (15)

and the resultants,
M= /

/ = (16)

S= /
/ = = (17)

3  WEIGHTED RESIDUAL FORMULATION
The method of  weighted residuals  is  applied to obtain the

weak form of the Mindlin-Reissner governing equations. The
weak form will be constructed in a manner that facilitates a
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locking-free FE discretisation.
Nodal quadrature cannot directly process the integrands

from  the  individual  elements  to  which  the  node  is  common,
because each contributing basis function derivative will be
multi-valued  at  the  node  (discontinuous  across  the  element
edges). For the process of nodal quadrature, the basis func-
tions derivatives, or, equivalently, the strains should be com-
puted using a special strain-displacement operator, so we use
an assumed-strain method.

A separate residual statement is kept for each weakly en-
forced boundary condition. The three residual equations are as
follows:

The balance equation residual:

= = 0 (18)

The natural boundary condition residual :

= 0 (19)

The kinematic equation residuals:

) = 0 (20)

) = 0 (21)

Here  is the test function (generalised displacement, as in-
dicated by the tilde ‘~’ ), which is assumed to vanish along the
portions of the boundary where essential boundary conditions
are prescribed, in order to eliminate the unknown reactions:

[ ] =  0,  where  the  ith  component  of  the  generalised  dis-
placement is prescribed on C.

Next, the assumed strain operators and  will  be  de-
rived from condition that they will make the kinematic resid-
uals (20) and (21) identically zero. The process will be the
same for both and . Hence, we will describe the deriva-
tion of  only.

4  PATCH AVERAGED ASSUMED STRAIN
We now derive the strain-displacement assumed-strain matri-
ces for meshes of isoparametric three-node triangles, four-
node quadrilaterals, or possibly a combination of both element
types.

We introduce the finite element approximation =
and =  .

 We have introduced matrices  and the strain-
displacement matrices  (not yet specified), that are used to
obtain the assumed strains as

= (22)

We obtain

= 0 (23)

Fig. 3 explains the indices. For a particular I, we note that in
order to formulate strictly local operations, we should only
consider the strain-displacement matrices  defined within
the elements er, r = 1,  … ,  5  connected to node I. The index J
then ranges over J = Jq, q = 1, … , 6 and J = I. Therefore, we re-
place  in (23) with the limited range J  nodes(elems(I)) ; the
term nodes(e) refers to nodes of the element e, the term el-
ems(I) refers to the elements connected to the node I, and the
term nodes(elems(I))  refers  to  the  union  of  the  nodes  of  the
elements connected to the node I. Therefore we use the inte-
grals

= 0 (24)

J  nodes(elems(I))
for any particular node I.

Fig. 3. Nodal patch illustrated on (a) four-node quadrilateral mesh; (b)
three-node triangular mesh; (c) mixed mesh; and (d) a three-node triangu-
lar mesh with boundary conditions

Fig. 4. Nodal quadrature locations for the triangular and quadrilateral ele-
ments

Fig. 4 shows the quadrature rules for two of the simplest el-
ement formulations discussed. The weights are 1/3 for each
node of a triangular element and 1 for each node of quadrilat-
eral elements. Using numerical quadrature, the integral (24) is
replaced by the following double sum:
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( )

)] = (25)

J  nodes(elems(I))
where e ranges over all the elements in the mesh, K ranges

over all the quadrature points in the element. Here, the quad-
rature points coincide with the nodes. xK is the location of the
quadrature point (node), ) is the Jacobian of the isopara-
metric mapping, and WK is the weight of the quadrature point.

Finally  we  are  led  to  the  definition  of  the  assumed-strain
nodal matrix as a weighted average of the elemental strain
displacement matrices.

)( )

( )
(26)

Thus, constructing the nodal strain-displacement matrices
as averages of the strain-displacement matrices from the con-
nected elements will satisfy the kinematic residual statement,
enabling nodal quadrature in the process. If the integration
point K lies at a multi-material interface, the above derivation
is not valid since the material stiffness matrix Ds is multi-
valued at xK.  Under  these  circumstances,  one  must  split  the
sum of the elements into two or more groups, one for each
material. Then for each group, the material stiffness matrix
will be single-valued.

Since the element is integrated at the nodal points, the same
function can be used to interpolate the quantities within the
element as well as to describe the deflection. Thus, the element
is an isoparametric element.

5  ABAQUS IMPLEMENTATION
In this section, the main features related to the Abaqus imple-
mentation through the user subroutine UEL are discussed.
The following information must be passed on to Abaqus from
the user element code [9]:

Strain – displacement matrix B
Constitutive law matrix D
Element stiffness matrix k

k=                                    (27)
Element internal force vector Fi

=                                     (28)
Numerical integration

These have to be coded in FORTRAN. In the subroutine,
nodal coordinates (COORDS), nodal displacements in the glob-
al coordinates (U) and the material properties defined in the
input file (PROPS) are available, while the right-hand-side vec-
tor (RHS) and the Jacobian matrix (AMATRX)  of  an  element
need to be defined. In addition, the state dependent variables
(SVARS) can be updated at the end of each iteration.

Each element has four nodes,  and each node has three de-
grees of freedom (w, x, y). First, the global nodal displace-
ments are converted into local displacements.

Through the *USERELEMENT command, we define 4-node
user elements. We also provide three real-valued user proper-
ties: the element thickness t, Young’s modulus E and Poisson’s

ratio . This is done through the command *UEL PROPERTY
[11]. Since there is no way to display user elements in post-
processors, all the user elements are duplicated with overlay
elements with a very low stiffness. This enables the displace-
ment to be visualised in the post-processor.

Fig. 5. Global flow in Abaqus

The  name  of  the  FORTRAN  file  containing  the  UEL  code
must  be  added  to  the  normal  command  for  launching  an
Abaqus job as follows:

abaqus job=<job-id> user=<name-of-file>
Example:
abaqus job=clamped_strip.inp user=NIP-Q4.for
User elements in Abaqus cannot form part of a contact sur-

face.  However,  this  problem  can  again  be  solved  by  making
use of the duplicate overlay elements to define the contact
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surface.  In  addition,  it  is  necessary  to  make  some  simplifica-
tions to the formulation in order to implement it in UEL. Fig. 5
shows the flow of the algorithm used in Abaqus for solving
nonlinear equations, and the interaction of the UEL with it.

6  NUMERICAL TESTS
6.1 Simply supported square plate with concentrated

load
In this test, a simply supported square plate subjected to a
concentrated load at the centre is simulated as shown in Fig. 6.
Poisson’s coefficient value is assigned in this example to make
the plate incompressible and check for the occurrence of  vol-
umetric locking. The length of the plate is L=10 and the thick-
ness is I=0.2. The material properties are given as I=3.0x106

and v=0.3. The concentrated force F=400. One quarter of the
plate is discretised with 4x4 regular mesh by taking advantage
of the symmetry of the plate and applying the symmetric
boundary condition available in Abaqus. Table 1 lists the ver-
tical displacement of the centre point for various elements
comparing to the analytical results. The result is compared
with a series solution based on Kirchhoff’s theory, considering
it to be a thin plate. The displacement at the centre of the plate
is given by:

=
4P
DL

sin 2 sin 2
(m + n ) (29)

Fig. 6. Simply supported square plate with concentrated load

6.2 Clamped strip
In  this  example,  the  dimensions  of  the  plate  were  220mm  x
70mm and its thickness was 3mm. The Young’s modulus was
1195. The load applied at the centre was 100N. The strip is
shown in Fig. 7. Considering the strip to be a beam, the analyt-
ical solution of the displacement at the centre is given by:

=
192

(30)

Fig. 7. Clamped strip

The results are given in Table 1.

7  RESULTS

Fig.  8  shows  the  displacement  contours  for  the  simply  sup-
ported  plate,  while  Fig.  9  shows  the  results  for  the  clamped
strip. Table 1 gives the results of displacements obtained in the
numerical tests using the analytical equations, Abaqus S4 gen-
eral shell elements, and the nodally integrated new formula-
tion for plates.

Fig. 8. Contour plot of one quarter of simply supported plate

Fig. 9. Contour plot of clamped strip
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8  CONCLUSION
A new nodally integrated element formulation was described.
This formulation makes use of the weighted residual method
to derive the assumed strain relations. The nodal integration
was performed by averaging over the nodal patch. It was
found that Abaqus UELs are not suitable for implementing
element formulations where the properties of more than one
element are needed at a time for calculation. A new element
formulation for four-node quadrilateral elements was imple-
mented in Abaqus, and two examples were used to test its
behaviour. However, the simulated results have a limited cor-
relation with the analytical results, and cannot match the per-
formance of the inbuilt elements, as seen in Table 1. This could
be attributed to the assumptions made in order to implement
in Abaqus UEL, and due to the research being at an initial
stage. Improvements in the accuracy of the formulation and in
the implementation in Abaqus will help to improve the re-
sults.
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TABLE 1
DISPLACEMENT RESULTS OF NUMERICAL CASES

Test Analytical
S4

elements
New

formulation
Simply supported

plate 0.021138 0.021502 0.014779

Clamped strip 29.468 29.459 24.224


